1 THIRD-ORDER ELASTIC MODULI OF

motion of the sublattices under stress, which is possible
in the case of the fluorite structure.

B. Griineisen ¥’s

From the values of the SOEM at room temperature
and 0°K together with their pressure derivatives
(Table VI), the mode Griineisen ¥’s y;(i=1, 2, 3) and
the low- and high-temperature limits of their thermal
average vz and vy may be evaluated.*? The v,’s for

2 D. E. Schuele and C. S. Smith, J. Phys. Chem. Solids 25, 801
(1964).
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some directions of high symmetry are shown in Fig. 5,
where ¢ denotes the azimuthal angle, 6 denotes the
colatitude, v; refers to the longitudinal mode, and v; and
v refer to the slow and fast shear modes, respectively.
In Table XII, vz and vg are shown together with the
values deduced from thermal expansion.’® As can be
seen, there is a good agreement between the two sets for
v1, while the values of vy disagree. This is also the
case'™? for CaF, and BaF,, and is probably due to the
contributions of the optical modes to the thermal ex-
pansion value of yg.
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The self-consistent-field theory of lattice dynamics is examined with particular emphasis on the physical
assumptions entering this approach. The solution of the basic equation is generalized beyond that of earlier
treatments to include damping and the corresponding frequency shifts of the collective modes. The ex-
pressions found for the damping and frequency shifts contain renormalized anharmonic force constants
but otherwise are essentially the same as those derived in conventional perturbation theory.

I. INTRODUCTION

VARIETY of physical problems concerning the
dynamics of many-body systems has been treated
in a self-consistent-field (SCF) approach. In this method
complicated many-body interactions are replaced by
some simplifying effective field. The form of this field
depends, of course, on the particular system being con-
sidered. For example in the random-phase approxima-
tion! for the high-density electron gas, one introduces
the time-dependent self-consistent Hartree potential as
the effective potential acting on an electron. In discuss-
ing the dynamics of spin systems in the molecular-field
approximation,? one replaces the interaction between
the spins by a self-consistent magnetic field acting on
the individual spins. Phase transitions in ferroelectrics?
and transitions from one lattice structure to another*
have been handled in a similar self-consistent-field
approach.
The traditional theory of lattice dynamics® has failed
for solid helium because of the large zero-point vibra-

* Paper based on work performed under the auspices of the
U. S. Atomic Energy Commission.
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tions,® and therefore other approaches have been pro-
posed.”™ % Brenig! was the first to suggest a SCF
approach, and this has been further developed by Fred-
kin and Werthamer (FW)!2 and by Gillis and Werth-
amer (GW).1® Because of its mathematical simplicity
and its flexibility to incorporate many physical effects,
it is particularly interesting to pursue this method.

The aim of this paper is first to reexamine the theory
of FW and GW. By solving their basic equation in a
different way, we are able to elucidate more clearly the
physical assumptions going into this approach. Second
we generalize our method of solving their basic equa-
tion to include phonon-damping effects.

The outline of this paper is as follows. Section II
contains the formulation of the SCF approach. Our
method of solving the basic equation of motion is
presented in Sec. III. In order to prove that the physical
assumption made in Sec. III is identical to the more
mathematical assumption of GW, we briefly discuss in
Sec. IV their solution of the basic equation of motion.

( 8F. W. de Wette and B. R. A. Nijboer, Phys. Letters 18, 19
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In Sec. V the treatment of Sec. IIT is generalized to
include anharmonic effects which give damping (as well
as frequency shifts) of the collective modes. Comparison
is made with the results from conventional perturbation
treatment. Section VI contains some concluding
remarks.

II. MATHEMATICAL FORMULATION

We shall closely follow FW,2 and we introduce single-
particle states characterized by eigenfunctions @«(X)
and energies e,. These are determined from the static
Hartree equation

{—(hz/ZM)VZ—f-;’ /dx’ VR+x—R'—x"){pr' (X))o

X oa(X) =eapa(x). (2.1)

Here the atom in the Rth cell is assumed to move in the
static self-consistent field of the surrounding atoms.
(pr(x))o is the mean particle density in the Rth cell,
averaged over an equilibrium ensemble, so that

<PR(X)>0=EB: fol es(®)12, (2.2)

with
fo=exp(—es/kpT)/2_ exp(—ey/ksT).

V(x) is the interparticle potential, and M is the atomic
mass. For simplicity we consider a Bravais lattice; the
generalization to other cases is straightforward.

The collective modes will be introduced in the spirit
of a SCF approximation. Following FW, we apply an
arbitrary weak external potential Vre*¢(x,f) which acts
on the Rth atom, and we calculate the induced change
in the single-particle density matrix

{or(x,X,0)) = (=" (X, )¥r(x,0)) .

Yri(%,f) and yYr(x,f) are the creation and annihilation
operators, respectively, of a particle in the Rth cell.
In the SCF approximation here, the effective potential
acting on the Rth atom is assumed to be

(2.3)

Vreti(x,t) = Vre=t(x,0)+2.' /dx’ V(R+x—R'—x')
RI

X (PR’ (X,7x,7t)>iﬂd ) (2 4)

where the subscript ind denotes the change in the
density matrix due to the external disturbance. The
linear response of the density matrix is then given by

<PR(x)x,;t)>ind=f dll /dxlxl(o)(xx’t; Xltl)
—o0

X VRGH(Xbel) , (25)
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where the retarded response function is

X1 O(xx't; X1t1) = (1h)~10(t—1,)
X <[pR(X:XlJt):PR(XI’X1711)]>0 .

[4,B] is a commutator, and 0(¢) is the unit step func-
tion, being unity for {>0 and zero for ¢<0. The zero
subscript means that both the thermal average and the
time evolution of the operators are to be calculated
within the static Hartree approximation.

We notice that this response function refers to only
one atom and its value is independent of the lattice
position R. For the reason that we have started from
single-particle states, given in Eq. (2.1), the coupling
of the motion of the individual atoms enters only
through the effective potential in Eq. (2.4). In a more
general treatment the response function would depend
on two lattice sites, and it would contain collective
effects besides the single-particle effects.

(2.6)

III. SOLUTION IN POSITION
REPRESENTATION

FW!2 and also GW' solve Eqgs. (2.4) and (2.5) by
changing from the position representation to the repre-
sentation defined by the eigenstates {¢a.(x)} of the
Hartree Hamiltonian. In order to elucidate more easily
the physical assumptions made by these authors, we
shall here continue in the position representation. We
need then to consider only the induced density
(pR(X;t)>'md'

Putting x=%"in Eq. (2.5) and using Eq. (2.4), we get

(or(x,1) md—f_“,'/ diy /dxl dx'"" XO(x¢t; x"'t)
X V(R"“RI'I'XH '—Xl) <PR1(x1,tI)>'md

=/ diy /d)ﬁ X(O)(Xt; Xlll)VReXt(Xl,h), (31)

where

X O (x¢; X3t1) =X (XX¢; X1t1) (3.2)

is the retarded equilibrium density-density response
function in the static Hartree approximation. The cor-
responding response function for the fully interacting
system is given by

3or(x,0))/8Vr (X' 1) = (1h)~'0(L—1')
X <[pR(x7t)pr’ (X/)l/):D .

Note that the microscopic density operator in Eq. (3.3)
can be written as

pR(X’t) = 6(X'—U(R,i)) .

The functional derivative above is evaluated for zero
external potential, and it gives the equilibrium response
function, which we denote by Xg_r/(x/; X't’). By taking
the functional derivative of Eq. (3.1), we obtain the

(3.3)

(3.4)
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following equation for Xg_r/(x¢; X't'):

Xp_ro(Xt; X't =3 / dh /dxl dx"" XO(xt; x"'1;)
R1 —
X V(R—R1+X”—XI)XRI_R/(th; X,fl)

=0rr XO(x; X't). (3.5)

From Eq. (3.4) follows
u(R,t)=/dx xpr(X,1), (3.6)

and consequently the retarded equilibrium displace-

ment-displacement  response  function,  denoted
D®R—R/,i—1), is given by!*
D(R—-R/,1—¢)

= -—/dx dx’ xXg_g/(xt; X't")%’ 3.7

=— ()00 —){[u®R,0),u(R"V)]J).

Similarly, we introduce

(3.8)

DO@¢—¢) = —/dx ax’ xx©O(xt; x't)x’, (3.9)

which is the corresponding response function in the
static Hartree approximation.

Multiplying Eq. (3.5) by x and ¥/, and integrating
over these variables, we obtain

DR-R/, i—)+Y / diy / dx, dx""

R1

X {/dx XXO(xt; x”tl)} VR—R;+x"—x1)

X {/dx’ Xgr,—r’(X1l1; x’t’)x’}

=bre DOU—1). (3.10)

We shall now introduce the assumptions on the
fluctuations in the system that are necessary to recover
the results of FW and of GW. First we write the
nonequilibrium mean density in the form

(or(x,0)) = (2m) 3 / dalexpliq-[x—u(R,)T})

— () f dq expliq- (x—(u(R,)) ]

Xe\p[—%q <u(R’t)u(R)i)>c'q+' : ']; (311)

14 The minus signs in Egs. (3.7) and (3.9) arise because D and
D are defined to give the response to an external force. Our
definitions differ in sign from those in FW and GW.
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utilizing the cumulant expansion. The subscript ¢ in-
dicates a cumulant, e.g., (uu),={uu)—(u){u). We
assume that only the mean displacements (u(R,))
change as a result of the external disturbance and that
all the other cumulants retain their equilibrium values.
It then follows that

(or (%,1) Yina = (or(x— (u(R,1))) )o—{pr (%) o
= —Vx{or(x))o- (u(R,))), (3.12)
ignoring the difference between the equilibrium Hartree
value of (pr(x)) and the fully self-consistent value. The
second line of Eq. (3.12) follows from the fact that the
external disturbance is considered infinitesimal. Physi-
cally the assumption above can be stated as follows:

The density distribution associated with each atom is
displaced rigidly due to the external disturbance, and
any distortion of the shape of the distribution is
neglected.

The response of the mean density to an external force
can be expressed through Eq. (3.12) in terms of the
corresponding response of the mean displacement
D(R—R/, t—1') as follows (see Appendix A for details):

/dx’ Xe_r(xt; X't) X' =V {or(X))o- D(R—R/, t—1').
(3.13)
Applying the same kind of argument to the nonequilib-
rium mean density {pr(X,?))o in the static Hartree ap-
proximation, we obtain the same relation as above with

X and D replaced by X and D), respectively. As
shown in Appendix B we also have

/ dx xXO(x1; X't) = DO —1")- Verlor(x))o. (3.14)

If we now insert Egs. (3.13) and (3.14) into Eq.
(3.10) and perform some partial integrations, we obtain
the following equation for the displacement response
function:

D(R—R’,z—t’)—Z'[ diy DO —1y)
R1 —

(VeVrV(R—Ry))o- DR1—R/, 11—1)

=0hrr' DOF—), (3.15)
where
<VRVRV(R—R1)>0=/dX dX]_ <pR(X)>0
XVRVRV(R—R1+X—x1)<pRl(x1))0. (316)

These quantities can be interpreted as renormalized
harmonic force constants.
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Equation (3.15) is most easily solved by going over
to the Fourier space, introducing

D©®(w) =/ dtetDO(1), 3.17)

D(qe) =Y / di iR D(R,), (3.18)
R —0

and
T(@ =R7;0 e R(VrVrV(R))o. (3.19)
We then get
{{DP]'=T(9} Dlqw)=I.  (3.20)

According to general theory of lattice dynamics,'s
D(q,w) satisfies an equation of the form

[_w2l + M(qyw)] D(q)w) =M1 )

where the retarded self-energy M(q,w) in general is
both wave-vector- and frequency-dependent. From the
inversion symmetry of the lattice it follows that M(q,)
is an even function of q, and from the translational in-
variance follows M(0,w)=0. We can understand the
second statement from the following reasoning: Assume
the lattice to move rigidly with translational motion,
which in Eq. (3.21) corresponds to a q=0 mode with
o finite. In such a state of motion the interatomic inter-
actions do not enter, and this means that M(0,0)=0.
The total inertia of the lattice is contained in the term
[—Mw?l]. For interatomic potentials of interest here
M(q,w) should be a regular function of q around q=0.
We can therefore conclude that it is of the form M(q,»)
=q-M(q,w)-q, where M(0,0) is related to the elastic
constants.

In order for Eq. (3.20) to be consistent with Eq.
(3.21) and with the stated properties of M(q,w), we
have to choose

[DO(w) = — M1+ T(0).

This means that our basic assumption on the fluctua-
tions of pr(X,/) made earlier implies that the single-
particle motion is harmonic with the restoring force
[T()-ul.

With this form for [ D®@(w)]* inserted into Eq.
(3.20) we obtain the phonon dispersion relations

@0 (Q)=M ey, [TO)-T(@] e, »=1,2,3  (3.23)

where e,, are the eigenvectors of [T(0)—T(q)]. The
displacement response function is

(3.21)

(3.22)

D(qw)=—M"" Z=:1 eplwl—wi(Q) ey (3.24)

Both these results agree precisely with those given by

15 A, A. Maradudin and A. E. Fein, Phys. Rev. 128, 2589
(1962). For the particular case of the retarded response function,
see the summary in Sec. 2 of G. Niklasson and A. Sjslander, Ann.
Phys. (N. Y.) 49, 249 (1968).
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FW and GW, noting that our T(q) is in the notation
of GW given by

T@=2 faf7<a7l VxVivq(x—X’) lay), (3.25)

and that a difference in sign arises from our definition
in Eq. (3.7) (see Ref. 14).

From our discussion it is clear that our basic assump-
tion, following Eq. (3.12), is essential in order to obtain
the results of FW and GW. If we would relax this as-
sumption, we would not get an equation involving only
the displacement response function but would get a
coupling to higher-order cumulants. In Sec. V we show
that taking into account also the response of the term
w@®,Hu(R,)), in Eq. (3.11) gives damping of the
phonons.

We notice that having made our basic assumption
on the density fluctuations, the single-particle motion is
uniquely determined. The Hartree states introduced
in the beginning enter only in the evaluation of T(q).

IV. SOLUTION IN HARTREE REPRESENTATION

By changing to the Hartree representation we shall
further demonstrate that our basic assumption in Sec.
I1I is indeed identical to the more mathematical assump-
tion made by GW. The development in this section
follows closely that of FW and GW. We can therefore
be very brief in our presentation, and we refer to the
above authors for more details.

We return to Egs. (2.4) and (2.5) and write them in
the representation defined by the eigenstates @a(X).
We then have

X, O (xx't; Xatr) = —(ih)_le(t—h)zb 0a(X') 08(X) @alX1)

X @s(X1) foa exp[ —twga(l—1)], (4.1)

Wlth fﬁa=(fﬁ—fa) and waa=(65—€a)/h. Without IOSS
of generality we can assume that the external potential
has the form

Vrei(x,) = Vexi(x; qu) exp[i(q-R—wi) ], (4.2)
and we then ask for a solution to Eq. (2.5) of the form

{pr(%,X,1))ina = 8p(xX’; qw) exp[i(q-R—wr)]. (4.3)

In the {¢.} representation we may write

dp(xx'; qu) = Zﬁ ea(x') ] op(qw) B es(x). (4.4)

Substituting Eqgs. (4.1)-(4.4) into Eq. (2.5), we obtain
an equation for {(a|dp(q,w)|8) which is identical to
that of FW [Eq. (24)]. Following FW, we separate
{a|8p(q,w)|B) into an even part £.s(qw) and an odd
part 7.5(q,w),'® and we obtain after some calculations

16 Only the even part of the density matrix will finally enter in
the problem.
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the following equation for £.s(q,w):

,Z:,S’ Map,arp (Qw)(—wprar forar) ™ 2Earp (qu)
= (—wpafpa)'? / dX1 @a(X1) 0p(X1) VE4(Xy; qu) . (4.5)

The matrix M ag,q5(q,w) is given by

Mag,arp(Q)0) =A(w? —wpa’) Saardppr — (—wpa foa) /2

X e | V| BN —wprar firar) 2, (4.6)

where
|Vl = [[dx a5’ s6) 0 (x)
XVy(x=x)pp(x) ppr (x') (4.7)
Vx—x)=3 e RV (R+x—%). (4.8)

R0

and

Map,op(qw) is the same as that of GW [Eq. (24)],
and Eq. (4.5) is the same as Eq. (29) of FW. The formal
solution of Eq. (4.5) is then given by

£ap(q,w) = (—wpafpa)t'?
X Z; [M1(q,w) Jap,arp (—wprar forar)

x / X100 (X) 3 (£) VoS (k15 Q). (49)

Assuming the external disturbance to be of the form
VEXt(xl; qw) = _XI'JEXt(qaw) ’ (410)

we can from Eq. (4.9) calculate the response of the
mean displacement of an atom to an external force,
following FW [Egs. (32), (33), (35), and (36)]. We

then obtain for the displacement response function

D(q,w)=—zﬁ Zﬁ (] X[ 8)(—wsafpa)'?

XM (Qw) Jas.ap (—wprar forar) 13 | X[ ). (4.11)

Introducing the eigenvectors Ugg, and the eigen-
frequencies #(w?—¢4,%) of the Hermitian matrix M og, a4,
we can write its inverse as

M qw) Jag,ep =20 (@ —{ 0" UapsUarpr v, (4.12)

and hence

D(qw)=—2Z# w*—§oH)™
X{Zﬁ (a|x[B)(—wsafpe)*Uap.)

X{ 'ZB’ Uargr (—wprar fora) V2 | x| 8)) . (4.13)
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This agrees with Eq. (3.24) only if
2 {a|x|B)(—wpafsa)*Uap,=h'"" M~ %y, v=1,2,3
a,B

otherwise.  (4.14)

It can be verified (see Appendix C) that this relation is
satisfied by assuming

Ua,g,y= h1/2M”2(—w,3af5a)1/2<0{| eq,-xlﬁ) , V= 1, 2, 3
=some vectors orthogonal to the above, »>3.
(4.13)

The corresponding eigenfrequencies are for v=1, 2, 3
identical to those in Eq. (3.23), and they are unknown
for v>3.

The above eigenvectors Uag,, are precisely those
assumed by GW [Eq. (39)]. We can therefore conclude
that our assumption in Sec. III is indeed equivalent to
theirs.

V. PHONON DAMPING

In this section we shall show how we can generalize
the treatment of FW and GW by also taking into
account the response of the second cumulant in Eq.
(3.11). In this way we obtain damping of the collective
modes.

In order to bring the rather heavy mathematical
formalism into a tractable form, we shall first introduce
a suitable matrix notation. By ¥ we mean a row matrix
with the following 12 components:

X= (xl,x2,xs;xlxl;x1x2yx1x3;x2x1,x2x2yx2x37
(5.1)

where here the subscripts 1, 2, 3 denote Cartesian com-
ponents. The corresponding transposed column matrix
is denoted by X7. Similarly we introduce the 12X12
matrix

DR-R/, (—1)=— / dx dx' XX (x; X)X (5.2)

X3h1,X5009,%3%3)

analogous to the 3X3 matrix in Eq. (3.7). XT¥’ is the
12X12 product matrix obtained by multiplying the
components of X7 and ¥'.

In its physical interpretation ® consists of four differ-
ent submatrices, so that we shall write it in the form

DR-R/,1—1)
Du(R—R’,i—1) Dp(R—R/,t—1)
=( ) (5.3)
Dz}_(R—R', t—1) D22(R‘—Rl’ If—l/)

Dy, is the 3X3 matrix introduced in Eq. (3.7) and

written there without subscripts; thus
Du(R—R/,i—/)=DR—-R', t—1). (5.4)

This is the part of ® whose Fourier transform has poles
corresponding to phonon modes. D 2(R—R', i—¢) is
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a 3X9 matrix with the elements

[D(R—R/, t—) T jn=—(ih)0(t—1)

X Lo (R0, (R (R 1) 1), (5.5)

the subscripts denoting the Cartesian components and
6(¢) being the same step function as in Eq. (2.6).
Similarly, Day(R—R/, {—{') is a 9X3 matrix where

[D21(R—‘R,, t—t') :lim,i = — (ih)“lﬂ(t—t’)
X (Lot (R tn(R 1) 20:(R' 1) ) -

Dy(R—R/, t—¢) is a 9X9 matrix whose elements are

[Dw(R—R/, (=1) Jijmn=—(i#)710(1—1')
X (Lots(R i (R,0) um(R, Y (R 1)

Analogous to the matrix D®({—¢) in Eq. (3.9) we
introduce

DO~ = —-/dx ax' XTXO(xt; x't"%, (5.8)

(5.6)

(5.7

which has a structure similar to that shown in Egs.
(5.3)-(5.7).

Multiplying Eq. (3.5) for the function Xg_r(x¢; X't)
with the product matrix X7%' and integrating over x
and X', we obtain the following equation for
DR-R, t—1):

DR—R, -+ | dn / dx; dx"
R; —%
X {/dx ETX(O)(Xt; X”tl)} V(R—R1+X”—'X1)

X {/dx’ XRl_Rr(X]Il; X'i’)xl}

=50rrDO(¢—t). (5.9)
This equation is a generalization of Eq. (3.10). We shall
use the same procedure to solve it as was used in Sec.
I11.

The integral within the second curly bracket in Eq.
(5.9) is a row matrix, whose elements are actually of
two different types. The first three elements are the
components of the following vector quantity:

(I) /dx’ XRl—R’(Xltl; x't’)x' = (zh)“‘@(tl—t’)

X{Lors(x3,10),u(R%) ). (5.10)
The remaining nine elements form a tensor
(Im / dx’ Xg,—r/(Xat1; X't)X'%' = (1h) 20 (t1—1)
X{Lori(xn,tn),u®)u®) . (5.11)
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The vector function is precisely the same as that
appearing in Eq. (3.10). As shown in Appendix A, it
gives the linear response of the density of the Rth atom
to an applied weak external disturbance, represented
in the Hamiltonian by a term of the form

Hr= —Z u(Ryt) J(R7t) ’ (512)
R

where J(R,f) is an external force on the Rth atom.
Thus, from Eq. (A7) we have

/dx’ XRlﬁRf(Xltl; X/t’)xi’

= 5<pR1(X17t1)>/5J'i(RI;tI) 5 (513)

where the functional derivative is assumed to be evalu-
ated for the external disturbance tending to zero.

Similarly, the tensor function in Eq. (5.11) gives the
linear response of the mean density a of particular atom
to a weak external disturbance represented by

Hi=—% u®R,)-JR,)-u(R,). (5.14)
R
We can, therefore, write
/(]X/ Xr—r(Xat1; X' 1) xx
= —5<pR1(X1’t1)>/6]U(R,7t,) ) (515)

where the functional derivative is again evaluated for
zero external disturbance. The term in Eq. (5.14)
couples the width of the mean density profile to J(R,f).

In precisely the same way as was done in Eq. (3.11),
we write

{pr(x,1)) = (2m)~* f dq e"* exp{ —iq- (u(R,1))

_%q <u(R7t)u(R)t)>0' q+ e } )

and we shall here assume that only the mean displace-
ment (u(R,)) and the width tensor (u(R,)u(R,)).
change as a result of the external disturbances. The
higher cumulants keep their equilibrium values. We
have then, as a generalization of Eq. (3.12),

<PR (Xat)>ind =— Vx<pR(X)>0 . <u(R,t)>
41V, Ve lor (%) )o :(u(R,)u(R,1)),ind |

(5.16)

(5.17)

noting that the external disturbances are assumed
infinitesimal. From Eq. (5.17) and using Eqs. (5.13)
and (5.15), it follows that

, o §(um(Ru,t1))
/dx Xry—r (Xaly; X't ) zvm<pR1(X1)>0_6}i(R’,zf’)
5(%m(R1,t1)%n(R1,t1)>c
_%an2<pR1(xl)>U (518)

TRt
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and
un(Ru,l1))
/ dx’ Xpy—re (Xala; X'1) i’ %7 = Vin(pr,y (X1) )o————
8T (R 1)
8(um(Rayt1)ten(Ruyle))e
_%an2<PR1(X1)>0 (5.19)

5],']'(R,,i’)

Repeated Cartesian indices are summed over in the
conventional way, and the functional derivatives are
evaluated for zero external distrubances. Finally we
can identify these derivatives with the submatrices in
Eq. (5.3) as follows:

(u(Ry,tr))/8J(R{') = Du(R;—R/, 41—1'), (5.20)
6<u(R1,t1)u(R1,t1)>c/5J(R’,tl)

= D21(R1—R/, f1—‘tl) 5 (5.21)
8(u(Ru,tr))/6J(R',) = Dyy(Ri—R/, 1—1') (5.22)
3(uRyt)u(Ryh))e/ SI(R'Y)

=Dy —R/, 11—1). (5.23)

Let us here for convenience introduce a row matrix
operator which has the following 12 elements:

_ 1 1 1 1
V=(V1, Vo, V5, —3V1s?, —3V1s? —31Vi2, —1V,2
1 1 1 1
—3Vao?, —3Vas?, —3Va?, —3Vse?, —3Vis?), (5.24)

and also the corresponding transposed column matrix
v7. We can then write Eqgs. (5.18) and (5.19), with
Egs. (5.20)~(5.23) inserted, in the following very concise
form:
/ dx’ Xpywe(Xaly; X't)¥

=V<PR1(X1)>0'®(R1—R/, tr—t') . (5.25)

The same kind of relation is obtained for X© (x¢; x't')
and DO(¢—¢), and with the same arguments as we
used to obtain Eq. (3.14), we get

/dx XTXO(xt; X'1) =DO(t—11) - VT{pr(X"))o. (5.26)

Inserting Eqgs. (5.25) and (5.26) into Eq. (5.9) leads
to

DR-R 1—1")+> f A1 DOt —1)
Ri J_»

‘ { / dx" dx; VT{pr(x"))oV (R—Ri+x" —x1)

XV(PRx(Xl»()} -DR1—R’, t1—-1')

=orrDOE—1). (5.27)
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We denote the negative of the quantity appearing in
the curly bracket by (R—R’). Performing some partial
integrations to make ¥ and V7 operate on the potential,
we can bring the matrix T(R—R’) into the form

TuR) T12(R))

(5.28)
Tu(R) TaR)

.

where the four submatrices are given below.
T is the 3X 3 matrix introduced before in Eq. (3.16):

TuR)=(VrVrV(R))o. (5.29)
Ti2 is a 3X9 matrix with the elements
[T1(R) Jijm=—3(V2iuV (R))o, (5.30)
and similarly Ts; is a 9X3 matrix with
[To1(R) Jim,i=5V2imiV (R))o. (5.31)
Finally Tas is a 9X9 matrix, where
[To(R) Jgimn= —HPomn V(R (5.32)

Here the bracket (- --)o indicates the same averaging
procedure as used before in Eq. (3.16).
With the above notations Eq. (5.27) is written

DR-R, 1=1)=3 / dti DO (t—t1)- T(R—Ry)
R1 —®

DR1—R, 1) =R DOF—1), (5.33)
which is a generalization of Eq. (3.15), Introducing the
corresponding Fourier transforms as in Egs. (3.17)-
(3.19), we have

D) =DV (w) - TQ) - D(q,0) =DV (w),

and thus
D(q,w) ={[DO(w) ] —=T(P}*. (5.35)

We are actually not interested in the full matrix
D(q,w) but only in the submatrix D;;(q,w). The posi-
tion of the poles of Dyi(q,w) gives the frequencies and
the damping of the phonon modes. We have, therefore,
to extract this submatrix from ®(q,w). The mathe-
matical procedure for doing this is given in Appendix
E, where we use the relation

Do (q,0) =[Dra(q0) 17,

which is proved separately in Appendix D.

We shall make certain approximations as we proceed.
Partly, this is because we wish to get contact with
familiar results for phonon damping, obtained from
conventional perturbation procedure. If the coupling
is weak between the displacement (u(R,£)) of the particle
mean density and the variation of its width, represented
by (u(R,H)u(R,f))., the quantities T2 and Ty are small.
We need then to include these only to lowest order,
which actually means including quadratic terms in Ty,

and T21.

(5.34)

(5.36)
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q'+aq/2, w'+ws2

q'-q/2, w'- w2

Fic. 1. Third-order diagram to the phonon self-energy in the
conventional perturbation treatment. The filled triangles indicate
three-phonon vertices.

Furthermore, we shall neglect T2,(q), containing the
fourth spatial derivative of the interaction potential.
We notice that the conventional fourth-order an-
harmonic correction to the phonon self-energy, ob-
tained in lowest-order perturbation theory, is already
included in the approximation in Sec. III. The term
T..(q) above contains those higher-order effects which
were discussed by Enz!7 and more recently by Gotze
and Michel.!8 For solid helium these terms are probably
not negligible. However, for the reason we intend to
discuss this point in a separate paper, based on a treat-
ment which goes beyond the SCF approximation, we
shall here proceed as if Tss(q) can be neglected.

The equation obtained in Appendix E for the dis-
placement response function is

{((Dn@F'—Tyu—[Du@] DTy,
~TpDo T[4+ Dy To ' =T, Dy @[ D, @1
X[+ D1 To 7} Du=I. (5.37)

For brevity the arguments q and w have been dropped.
In obtaining Eq. (5.37) the matrix Ty, has been set to
zero but so far no assumption on the magnitude of Ty,
and T has been made.

Because of the assumption that Ti; and Ty are small
quantities, to lowest order we can evaluate the response
functions appearing in the curly bracket in Eq. (5.37)
within the approximation in Sec. ITI. This implies

[Du(o) (w):]”l =—Mw?l +T11(0)
D12 (w) = Dy M (w) =0.

(5.38)
(5.39)

and

It also implies a certain relation between Dass(q,w)
and the displacement response function which is dis-
cussed in the following.

To lowest order in T, and Ta1, Eq. (5.37) then goes
over to

{— M1+ T1(0)—Tu(q) —Ti(q)
- Daa(q,w) - Toa(Q)} - Dulqw)=1. (5.40)

17 C. P. Enz, in Mathematical Methods in Solid State and Super-
Sluid Theory, edited by R. C. Clark and G. H. Derrick (Plenum
Press, Inc., New York 1968), p. 339.

18 W, Gdtze and K. H. chhel Z. Physik 223, 199 (1969).
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From this the phonon self-energy is seen to be [cf. Eq.
(3.21)]
M(qw) =M"[T1(0) —Tu(q) J—M"T1(q
“Dax(quw) - Tau(q).  (5.41)
The first part of Eq. (5.41) is the same as that found in
Sec. III, whereas the second part is a result of the
coupling between the displacement and the change of
the width in the mean density {(or(x,)).
As shown in Appendix F, we can for the second con-
tribution above [denoted by superscrlpt (2)] write in
space and time variables

Mu®»R-R’ —1)
=(—ih/2M) 3. {V¥mm V(R—R1))o
Ri,R2

X{DmaT (R1—Ra, t—') DT (Ra—Ry, ' —1)
—Dpn<(Ri—Ra, {—1")Dyr”(Re—Ry, ' —1)}
X{(VeuV(Ra—R")), (5.42)

where summation over repeated subscripts is made.
Here T1s and T have been replaced by the expressions
in Egs. (5.30) and (5.31). The new quantities introduced
here are

D (R—=R', 1 =) =(—18) " un(R,D)u. R 1)), (5.43)
Dopn~(R—R/, t—1')=(—1h) "N (R )un(R1)), (5.44)
and the time-ordered phonon Green’s function

D7(R—R/,i—¢)=D>R—-R/, t—1),
=D<R~R/,t—1),

>

1<t'.  (5.45)

These quantities should be evaluated within the ap-
proximation in Sec. ITI.
Going back to the Fourier transforms, we finally have

ih dq' © dw’
Mkl(2)(q,w) = ——Tkmm'(q)/ ——f -
2M 0 J_ g 2

XADn T (@ +1q, &/ +H3)DormT(@ —3q, & —30)

=Dun<(q' 439, &' +30) D™ (q —3q, & —30)}
X[Twm(@)]*, (5.46)
where 5 '
Timm (@)= 3 € OR(Vpm V(R))o,  (5.47)

R#0

are the components of Te(q) multiplied by 2. We
note that Tkmmr(q) is an odd function of q and that
T imm(—Q) = Temm*(q). The ¢ integration in Eq. (5. 46)
goes over the first Brillouin zone, v being its volume in
reciprocal space [v=(27)3/volume of unit cell ]. The self-
energy above gives a damping as well as a frequency
shift of the phonons.

The expression in Eq. (5.46)%for the self-energy is
similar to that found in conventional perturbation
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treatment. There one finds that a phonon, to lowest
anharmonic order, decays into two other phonons,
giving both a damping and a frequency shift. The cor-
responding contribution to the self-energy is conven-
tionally represented by the diagram in Fig. 1. The ex-
plicit expression for it is

ih rdq e de
Mkz(2)(q,w)=~—/”—/ —
2M 0 J_y 2m

X(pkmm’(%q_q,) - q) %q+q,)
X{DnT(q' 439, &' +30)DuwT(q' — 39, 0 —3w)
=D (€' +3q, ' +30) D> (4’ =39, ' —3w)}
X[‘bn'nl(%q—q,, _q; %Q‘f‘q/)]* ) (5'48)
where
Pimm (34—9, =€ 34+9) = —{Vienm (34—q)
V}cmm’(q) = Z e—iq‘Rvskmm’ V(R) .

R0

with
(5.50)

If we omit the second term within the curly bracket
in Eq. (5.48), then we have the time-ordered self-
energy, and this expression agrees with that obtained
by Maradudin and Fein.' The result in the form given
in Eq. (5.48) can be found in a paper by Niklasson.!®

For the purpose of comparison we also write Eq.
(5.48) in space and time variables as follows:

Mu®®R—-R’,(—1)
=(—ih/2M) Y. ¥ ®ima(RRLRY)

R1,R2 R1",Ry/
X {Dm”T(Rl—R2) l‘_t,)Dn'm’T(R2,hR1,, [’—l)
_Dm"<(R1 _R27 ¢ —z/)Dn'm'>(RZI —‘R1l, 4 —t) }

X, (R, R/ R’), (5.51)
where
(I)kmm’(Rle,Rll) =Z ngmm’ V(R—R,)
Y
X [6rr;—Or'R; ][ ORRy —Or'Ryr ] (5.52)

Comparing Egs. (5.46) and (5.48), we see that both
expressions have the same structure and they both
represent a process where one phonon splits into two
phonons, conserving the frequency and the wave vector
(modulo a reciprocal-lattice vector). In the SCF ap-
proximation the third-order anharmonic force constants
T mm(q) contain an averaging over the atomic displace-
ments, and, therefore, they include certain anharmonic
corrections which are neglected in the lowest-order
perturbation results. On the other hand, the SCF ap-
proximation leaves out certain terms which certainly

19 G. Niklasson, Fortschr. Physik 17, 235 (1969). A generaliza-
tion of this paper to three dimensions is in preparation.
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are of importance in an actual quantitative calculation.
This is obvious from comparing Eqs. (5.42) and (5.51).
If in the latter equation we omit terms with R;=R//,
R,#=R,, we recover Eq. (5.42) with the renormalized
third-order force constants replaced by the bare ones.
In the diagrammatic language, it means that we are in -
the SCF approximation replacing the three-point
vertices in Fig. 1 by two-point vertices, depending only
on the lattice positions of two atoms. In (qw) variables
it implies omitting the first and the third terms in Eq.
(5.49).

We notice that the third-order force constants in
Eqgs. (5.47) and (5.49) both vanish linearly with q as
q— 0, but those in Eq. (5.47) have an incorrect coeffi-
cient of this linear term due to the neglect of the terms
mentioned above. We believe that the SCF approxima-
tion gives qualitatively and also semiquantitatively the
correct damping and frequency shift for most of the
phonons. We stress again that the ordinary fourth-
order frequency shift is included in the renormalized
harmonic-force constants.

VI. CONCLUDING REMARKS

We wish here to make some general remarks on the
SCF method.

We have shown in this paper that by treating the
basic equation of motion in space and time variables
and by limiting ourselves to certain types of fluctua-
tions, it is possible to give a straightforward discussion
of lattice dynamics including anharmonic effects. It
seems to us that the SCF method possesses sufficient
simplicity and flexibility to allow other kinds of fluctua-
tions to be included, e.g., diffusion of particles and
presence of vacancies and interstitials. We stress, how-
ever, that the approximations going into the SCF equa-
tions prohibit obtaining quantitatively accurate results.
An example of this limitation was pointed out at the
end of Sec. V.

As it is presently formulated, the SCF method is also
incapable of handling interparticle potentials which
have a very singular short-range repulsive part. There-
fore in order to apply the method to systems of actual
interest, the interparticle potential must be replaced
with some effective interaction. This has been done in
numerical calculations,?”?! but so far this problem has
not been thoroughly investigated.
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APPENDIX A

From the definition of Xg_x-(x¢; X'#') in Eq. (3.3) and
from Eq. (3.6) we find that

/dx’ Xp_r (xt; X't)x' = (k)"0 —1)

. XLor(x,0),u(R,)]), (A1)
and similarly
/ dx xXg_x'(xt; X't") = (th)~10(—1")
X{[u(R,0),por(x',1)]).  (A2)

In order to clarify the physical meaning of these
response functions we consider a weak time-dependent
external disturbance acting on the system. We intro-
duce formally this disturbance through a term H;
=BF(f) in the Hamiltonian of the system. F(¢) is an
external force in a generalized sense, and B is a dynami-
cal variable which can depend on the positions and
velocities of all the particles. Linear-response theory??
then tells us that the change of the mean value of any
dynamical variable 4 is given by the expression

)

KAW)=@Gh)t| d’'o@—1)
X(CA@®,BW) Do ()

The averaged commutator is evaluated with no external
disturbance present, indicated by the subscript zero.
Then, by definition,

A (0)/8F (') = (ih)~0(t— 1) LA ®),BF) Do,

implying here that the functional derivative is evaluated
for zero disturbance.
As a special case, we consider

H,= _u(R,) 'J(Rlﬁtl) )

(A3)

(A4)

(AS)

where J(R’,) is an external force acting on the R’th
atom, and

A=pr(x). (A6)
Then, applying Eq. (A4) in Eq. (A1), we have
/ dx’ Xg_r/(xt; X't)x" = —6{or(%,1))/8J(R",\'). (AT)
Similarly, if we choose
A=u(R), (A8)
we have
DR-R’, t=¢)=uR,))/8JR" )  (A9)

[cf. definition in Eq. (3.8)]. Equation (3.13) in the main
text is now easily obtained, using Eqs. (A7) and (A9)
together with Eq. (3.12).

22 H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).
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" The response function in Eq. (A2) is in a similar way
shown to give the response of (u(R,f)) to an external
potential V. e<t(x',¢).

APPENDIX B

We shall here employ the well-known relation between
the time Fourier transform of an equilibrium retarded
response function and the Fourier transform of the
corresponding averaged commutator,

1 o0 do’
F{0(t—1"){[or(x,0),u(R,") )} o= — / T

T J —p @ —w—10F

XF{Lor(x0uR,) D}e, (BI)

and similarly

1 0
SO —)[oRDpr(5) Yo = — /

71 J 0 —w—10T

(B2)

do’

X EF{ <[u(Rﬂt) ,PR(X,l’)]>}w .

F{---}» denotes the time Fourier transform of the
function within the curly bracket. The averaged com-
mutators above are odd functions of (¢1—¢'). This is
easily shown by writing the explicit expressions for these
averages in terms of the eigenfunctions of the Hamil-
tonian, and using the fact that these eigenfunctions can
be chosen real. It then follows that the two integrals
in Egs. (B1) and (B2) are equal. Hence we conclude
from Eqs. (Al) and (A2) in Appendix A, replacing
there Xg_r+ by X©| that

/dx” XXO(x"t; X't =/dx” XOx't; x"")x" . (B3)

APPENDIX C
To verify the statement in Eq. (4.15) we first show

that
h_lMEﬂ(a\xlﬁ>(—waafﬁa)<alxlﬁ>=l- (c1)

Introducing (fs— fa) for fs. and using the real-valued-
ness of the Hartree wave functions, the left-hand side
of (C1) can be written

— WM Z; Jalwasla|x|8)(B|x|a)

—(a|x|B)wsalBlx[a)]. (C2)
Using the relation [see Eq. (38) of F'W]
wasa| X[ 8)=— 1M~ a|V|B) (C€3)

and the identity > 5|8){(8]| =1 to perform the summa-
tion over the 3 states, Eq. (C2) becomes

2 fale|[Vx]|e)=1. (C4)
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Going back to Eq. (4.14) and using Eq. (4.15) for

Uausy, v=1, 2, 3, we now have

2 (el X|B)(—wpafpa) *Uap, =112M2 3 {a|x|B)
a,B a,B

X (—wgafpa)a|X|B) €q =111 €y, (C5)

This verifies the statement after Eq. (4.14) fory=1, 2, 3.
To prove the statement for »> 3, we write
3
x=3 (e X)eq,
=1
and then

Zﬂ(_wﬂrxfﬁa)”?(a 1%[B8)Uag.s
=é eqx{zﬁ(—wﬁafaa)m(a leqnX|8)Uas,r}

3
=hl/22 eq)\M_I/Q{Z Uaﬁ‘)\Uaﬂ,v}=O' (C6)
=1 a,p

The last equality follows from the orthogonality of the
vectors Uag,. This concludes the proof of the state-
ment in Eq. (4.15).

APPENDIX D

Using the same procedure as in Appendix B, we can
write

[ Di2(q,w) Ji,im
=F{0(—1"){[u:R,1),u;(R" 1 Yum(R',1') ) } g0
1 o0 do’

2i ) i —w—i0*
X F{LLus(R,1),11;(R 1 YR ) D} g
and similarly
[ Da1(q,w) Jim,i
=F{0(t— )[R Dum(R, 1), u:(R' 1) 1)} g
1 do’

211 J o 0 —w—10T

XF{ Lot (R, ) (R,1),1:(R' ) D as

(D1)

(D2)

where F{---}q, denotes the Fourier transform with
respect to R—R’ and ¢{—¢ of the function within the
curly bracket.

Since the averaged commutator is an even function
of R—R’ and an odd function of {—¢, it follows that
the two integrals are equal (see Appendix B). Hence
Eq. (5.36) follows.
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APPENDIX E

In this appendix we give the detailed derivation of
Eq. (5.37) of the main text. We start from Eq. (5.34)
and split it into its four matrix components and write
these in terms of the submatrices in Egs. (5.3) and
(5.28). As explained in Sec. V, we set here Tay(q)=0.
The two equations coming from the upper row of Eq.
(5.34) are then ,

Dll—. Dll(o)[Tll D11+T12 DZI]'—' D12(0>T21 Dll
=D;© (E1)
and

D12'— Dll(o)[Tll D12+T12 D22]

— DTy D= Dy, , (E2)

where the arguments q and w have been omitted for
brevity.

We multiply the above equations by the inverse of
D, and write the resultant equations as

{[Du(o):l_l —Tu— [Dn(o)]_l DIZ(O)T21} Du

—'Tlg D21= l 5 (E3)
{[Du(o)]'l—Tu-‘[Du(U)]_lD12(°)T21} Dy,
=Ty D22+[D11(°)]_1D12(0)~ (E4)

We notice that the quantities inside the curly brackets
are the same in both equations, and we can use Eq.
(E3) to eliminate the curly bracket in Eq. (E4). This
gives
[]+T12D21][D11]~1 Dyo=T1;Ds
+[Du®71Dyp®  (ES)

and
Di2=Dy[I4+TDy ]!

X{T12D2e4[ D101 D, @} .

Further noting that Dy is the transpose of Di. (see
Appendix D) we have
Doy={Ds T+ Dy Dy 0T 1
X[+ D13 Toi ' Dy, (E7)
We now substitute this for Dy in Eq. (E3), and we
obtain then the final equation for the matrix Dy;:
{[Du(o)]‘l—Tu—[Dn(o)]_le(O)Tn
—"-1-121322-1"21[]‘}‘D12T21]—1—TmD21(0)[|:)11(°):|_1

(E6)

X[I4+DysTo 17} Dyy=1. (ES)
APPENDIX F
From the definition in Eq. (5.7) we have
[Dou(R—R', i—1) Jumt ynnr = — (17) 20t —1")
X[t R ) shme (R, 1R Y0 (R ) ]y (F1)

Within the approximation in Sec. III the individual
phonon modes are statistically uncorrelated to each
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other, and we can express u(R,f) as a superposition of
individual phonon contributions, writing concisely

uR,)=N""30 ER,)), (¥2)

where the index s refers to a particular phonon mode.
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N is the total number of atoms in the crystal, and by
the way of writing we indicate that each phonon con-
tribution is of order N—1/2.

We insert Eq. (F2) into Eq. (F1) and make use of the
fact that (ER,)E'(R',F'))=0 for s>s" and that N is
essentially infinite. This leads to

[D2o(R=R', =) Jou e = = (i) 10U =) 20 ({6t (RDE(RL))

X (Enr® (R Ew (RLE)) A+ (En* (RO & (R (Emr ' (R E (R1)) — (6" (R ) En* (R,1))
X (R ) e (R1) — (Enr (R Em® (R (En (R, ) e (R1)) } = — (i) 710t — 1) { (o (R, Dun(R', 1))
X (ttn (R )t (R E)) At (R )t (R 1)) St (R )14 (R1)) — (R Yatn(R1) ) Gt (Rt Yt (R 1))

Here we have neglected higher-order terms in 1/NV.
Before we insert this into Eq. (5.41), we write the

second part of the self-energy in space and time

variables:

Mu@R=R, (—1)=@M)" > (Vimw VIR—R1))o

R1.R2
X [ DZZ(RI _R2, i"'l,)]mm’,nn’

XV tV(Ra—R))g.  (F4)

Here we have used the expressions in Egs. (5.30) and
(5.31) for Tis and T Repeated subscripts are to be
summed over. The first and second terms of Eq. (F3)
give equal contributions when inserted in Eq. (F4) and
similarly for the third and fourth terms. Thus we get

Mu®R—R', 11
=—(2hM)70(1—t") > (V¥umm VIR—R1))o

R1,R2
XA (tm (R, )1n(Royt”) )t (R, )t (Rayt”))
- <%n(R2,t’)Mm(R1,t)><%n' (Rz,t’)um/ (Rl,t»}
X(Vsn’an<R2_‘Rl)>0- (FS)

In order to bring this expression into a more familiar
form, we introduce the quantities defined in Egs. (5.43)-

— (e (R ) (R0 Ytn (R Yt (RYE))} . (F3)

(5.45) of the main text. We first consider the terms in-
side the curly bracket in Eq. (F5), and we see that for
>

{+- )= (=) [Dmn”(R1—Ro, 11
XD <(Ro—Ry, ' =) =D <(R1—Ry, t—1)

XDpm>(Ro—Ry, t'—1)]. (F6)

We notice that the retarded self-energy in Eq. (F5)

vanishes for /<#'. By writing the curly bracket as
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it agrees with Eq. (F6) for £>¢. The quantity on the

right-hand side vanishes for /<, so that we can actu-

ally replace 8(t—2){- - -} in Eq. (F5) by the expression

in Eq. (F7). We then have
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